Does secure land tenure save forests? A review of the relationship between land tenure and tropical deforestation

Brian E. Robinson, Ph.D., Research Fellow
brobinson@umn.edu
1. University of Minnesota
 Institute on the Environment
 1954 Buford Avenue
 St. Paul, MN 55108
2. University of Wisconsin-Madison
 Land Tenure Center
 122 Science Hall, 550 North Park Street
 Madison, WI 53706

Margaret B. Holland, Ph.D., Assistant Professor
mholland@umbc.edu
1. University of Maryland-Baltimore County
 Department of Geography & Environmental Systems
 211 Sondhiem Hall, 1000 Hilltop Circle
 Baltimore, MD 21250
2. University of Wisconsin-Madison
 Land Tenure Center
 122 Science Hall, 550 North Park Street
 Madison, WI 53706

Lisa Naughton-Treves, Ph.D., Professor
lnaughto@wisc.edu
1. University of Wisconsin-Madison
 Department of Geography
 355 Science Hall, 550 North Park Street
 Madison, Wisconsin 53706
2. University of Wisconsin-Madison
 Land Tenure Center
 122 Science Hall, 550 North Park Street
 Madison, WI 53706
Abstract
Deforestation and degradation are tied to a complex array of socioeconomic and political factors. Many assume that among the most important of these factors is land tenure and land tenure security. This paper reviews past literature connecting forest outcomes and land tenure to better understand broad relationships between land tenure form, land tenure security and forest outcomes. From a theoretical perspective, clear and secure forest tenure can have either a positive or negative impact on forested land, depending on political and economic conditions. We review over 130 empirical cases of forest outcomes under specific land tenure conditions and find that land tenure security is associated with less deforestation, regardless of the form of tenure. Protected forests are associated with more positive forest outcomes relative to private, communal and public land. We discuss consistency and identification issues in the current literature around deforestation and land tenure, and provide suggestions for future studies and implementation issues for policymakers.

Keywords
deforestation; degradation; land tenure; land tenure security; meta-analysis.

Acknowledgements
We thank Jessica Long, Marty Pfeiffer, Lisa Maas, Nicole Mathews and Emily Matson for their aid in reviewing cases and their productive discussion. Also, thanks to Daniel Bromley, Kelly Wendland, Susana Lastarria-Cornhiel, Matthew Turner, Lauren Persha and Kurt Brown who provided valuable comments on earlier versions of this paper. Any errors of interpretation or omission are solely the authors’ responsibility. This work was supported by the University of Wisconsin-Madison Land Tenure Center, United States Agency for International Development (USAID) Translinks Agreement #EPP-A-00-06-00014-00, the National Science Foundation – IGERT program (NSF-IGERT), International Forest Resources and Institutions (IFRI), the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and Conservation International (CI).

Acronyms
PES payment for ecosystem services; payment for environmental services
REDD+ Reducing Emissions from Deforestation and Degradation
1 INTRODUCTION

Land tenure and forest property rights are critical issues for the new wave of incentive-based policy instruments that aim to safeguard public goods in tropical forests (such as carbon, water, and biodiversity) by paying people to protect them. The most recent and highest profile of these instruments, REDD+ (Reducing Emissions from Deforestation and Degradation) is attracting significant international investment. Property rights tied to tracts of land directly determine who is eligible to receive protection incentives as well as who is responsible for meeting programs’ contractual obligations. Clear and secure land tenure is critical for an efficient REDD+ program and equitable distribution of benefits (Bruce et al., 2010). Yet the world’s most carbon-rich and biodiverse forests are often found in regions where ownership is ill-defined, contested or insecure (Figure 1). Some describe current ‘chaos’ in property regimes (e.g. Fitzpatrick, 2006), particularly in areas amid transitions from customary norms where legal codified rules are not yet operative.

For these reasons, policy makers see tenure as one of the key issues shaping the social and environmental impact of REDD+ and related programs (Sikor et al., 2010; Sunderlin et al., 2009; Unruh, 2008). But the basic tenure and deforestation terminology used in studies is often confused or insufficiently defined. Further, it remains unclear whether specific forms of tenure are more “sound” than others, when tenure security matters and how communities at the forest-farm interface internalize these concepts.

Yet forest outcomes are connected to a complex array of socioeconomic and political factors. Interventions to “clarify tenure” are rarely a simple administrative or technical challenge, but warrant a cautious approach, especially since some titling programs have shown varied outcomes in improving landholders’ livelihoods (Deininger and Feder, 2009). Land is more than an input to agricultural or forest productivity. Land has social, cultural and political value, and is particularly central to indigenous rights movements (Platteau, 2000) and ways of life that are not necessarily compatible with fixed land rights (Fox et al., 2011) (this issue).

That said, tenure determines who has the right to benefit from forests and who has duties to protect them. Addressing tenure issues are pivotal for the success of payments for ecosystem services (PES) or REDD+ programs

1 REDD+ is the strategy approved as part of the Cancun Agreements at the recent United Nations Framework Convention on Climate Change (UNFCCC) 16th Conference of Parties (COP 16) to avoid deforestation and/or enhance existing forest carbon stocks.
since landholders must have the power to make land use decisions and defend land against outside claimants or other agents of land use change. In the context of these incentive-based approaches in addition to standard command and control type policy (Börner et al., 2011) (this issue), there seems little alternative to improving and supporting state-recognized land tenure rights.

In practice, the outcomes of forest tenure studies seem to show little consistency in how any particular type of land tenure affects forests. There is increasing evidence that indigenous groups and those acting collectively can be successful at managing forest resources, but this also requires security in their land claims (Nepstad et al., 2006; Sandbrook et al., 2010; Wynberg and Laird, 2007). Protected areas generally help avoid tropical deforestation over other land tenure forms (Andam et al., 2008; Joppa and Pfaff, 2011), but insecure “paper” parks are common in areas with limited capacity for governance and, moreover, extensive tracts of carbon-heavy, biodiverse forest lies outside of areas under strict protection (Agrawal, 2007; Soares-Filho et al., 2006; Sunderlin et al., 2008b). We need a better understanding of how the form of tenure and tenure security interact to affect forest outcomes.

Our aim is to better understand the relationship between land tenure form, land tenure security and forest outcomes. In doing so, we hope to aid in identification of sites and situations where land tenure interventions can help slow deforestation. By land tenure we broadly mean the set of institutions and policies that determine how land and its resulting resources are accessed, who can benefit from these resources, for how long and under what conditions (USAID, 2008). To gain analytical traction for our study we construct two null hypotheses: 1) there is no association between the form of land tenure and the likelihood of forest conservation, and 2) there is no association between the security of land tenure and the likelihood of deforestation. We evaluate these hypotheses in relation to existing theoretical and empirical literature.

We first briefly review tenure terminology and distinguish the form of tenure (i.e. norms and rules governing access to land and forests) from tenure security (the assurance that these norms and rules will be enforced). Section 3 reviews the theoretical economic literature on tenure security and deforestation, and describes the practical limits of these models for providing guidance in program implementation. Turning to the empirical literature, in Section 4 we look for an empirical relationship between the form and security of tenure and forest outcomes. In light of the notable variation in tenure forms and level of tenure security between regions (Sunderlin et al., 2008a), we examine variation in the tenure-forest relationship between geographic regions. We conclude by discussing the most likely contexts in which tenure might influence emissions via land conversion at the forest-farm interface in the tropics.
2 BASIC TERMS

The debate regarding the impact of tenure on forest conservation is hindered by uncertain terminology. Property rights and land tenure are often used interchangeably. Here we make the distinction that property rights refer to a bundle of rights guiding the use, management, and transfer of assets. Land tenure is the set of institutions and policies that determine locally how the land and its resources are accessed, who can hold and use these resources, for how long and under what conditions (Bruce et al., 2010; USAID, 2008). Land tenure, then, is a set of property rights associated with the land, and the institutions that uphold those rights.

The form of land tenure refers to the rules and norms associated with any number of entities, such as an individual, a public institution (e.g. the national park service), a private company, a group of individuals acting as a collective, a communal or common-property arrangement or an indigenous group. Public and communal tenure are prominent in the tropical forest management literature given that they often constitute large land areas (e.g. ≥10,000’s ha). Such scale is important for REDD+ initiatives to lower transaction costs of implementation and maintain ecosystem functions. Public and communal landholdings are generally nontransferable, which also has significance for REDD+ as carbon contracts are designed to be long-term.

While land tenure can take on a number of forms, we define security in land tenure as the assurance that land-based property rights will be upheld by society. Security does not refer to the duration, marketability or the breadth of rights over a piece of land; these are all components of a particular form of tenure (Sjaastad and Bromley, 2000; van den Brink et al., 2006). Further, the ability of a government to expropriate land does not necessarily imply insecure tenure, as long as just compensation is assured. In this sense, “security” can be over the physical asset itself (the parcel of land) or the right to the value of that asset (monetary compensation).

There is increasing recognition among development scholars that formal or legal tenure is not always sufficient to impact landholders’ decision-making, but how one perceives tenure is what matters (Broegaard, 2005); a reaction, in part, to the long-held assumption that land titling equaled tenure security (e.g. Deininger and Feder, 2009; Feder and Feeny, 1991). Therefore, the influence of tenure security – both de facto and de jure – has become the focus of many recent discussions.
3 THEORETICAL LITERATURE ON LAND TENURE AND FORESTS

Development economists have used economic theory to explore the effect of land tenure security on forests through at least four different frameworks: game-theory, the Faustmann optimal timber rotation model, a model of optimal investment and land use cost-benefit analysis. Game-theory models (e.g. Clarke et al., 1993; Hotte, 2005) analyze optimal enforcement of costly property rights. In these models tenure insecurity unambiguously increases the costliness of protection, resulting in a lower optimal resource stock (i.e., more deforestation).

The other three types of models incorporate tenure insecurity as the probability that land will be expropriated (without just compensation) at some point in the future. In a Faustmann framework (Reed, 1984; Zhang, 2001), this serves to shorten the optimal timber rotation and may decrease the value of forested land, making agriculture more attractive. In a model of optimal investment and resource use, Bohn and Deacon (2000) find that increased insecurity also results in lower overall forest stocks.

The fourth type of model, land use cost-benefit analyses that compare the net present value of alternative land uses, has less clear implications. Mendelsohn’s (1994) seminal paper shows that tenure insecurity has an ambiguous impact on forest conversion to agriculture. Barbier and Burgess (2001) extend this model to show the potential rationality of “timber mining,” but tenure insecurity can ultimately promote or protect forests depending on parameter values. Angelsen (2007) uses a spatially explicit (von Thünen) model in which tenure insecurity is actually protective of forests. Amacher et al. (2009), which is the most complex but also most complete model, incorporates migration and illegal timber harvesting in the presence of tenure insecurity. They derive some general lessons, but show that better approximations of reality result in complex outcomes with respect to tenure security.

As a whole, the theoretical economic literature shows that the relationship between tenure insecurity and forests depends on local context. One contextual factor could be the way one frames the investment decision. If forest is assumed a productive investment in the model (i.e. an industrial timber forest) then tenure insecurity promotes more deforestation (Bohn and Deacon, 2000). Alternatively, if agriculture is modeled as a productive investment relative to (unproductive) forest, insecure tenure results in protection of forest (Angelsen, 2007). In new work, Barbier and Tesfaw (2011) (this issue) allow for land tenure security and land management decisions to be endogenous. This could, for instance, induce more tree planting. An earlier review of economic tropical deforestation models by Kaimowitz and Angelsen (1998) concludes the most salient contextual factors that increase deforestation are increased agricultural and timber prices, decreased cost of labor, easy access to forest lands and opportunities for
long-distance trade. They similarly conclude that the impact of tenure insecurity depends on local conditions.

Even when we identify contextual conditions where the theoretical impact of tenure security is clear, it may be difficult to derive concrete empirical lessons about particular forms of tenure or the mechanisms through which tenure insecurity works. Theoretical economic models deal with the form of tenure and tenure security in relatively crude ways. In most cases, models use a profit-maximizing framework and tenure security is a probability of expropriation of property. Profit-maximization implies no specific form of tenure, so these models provide no insight on how to compare, say, freehold, leasehold and customary tenure arrangements. No studies deal with the complex incentives that arise from different forms of tenure, much less the conflation of how the security of that form affects decisions (see Kaimowitz and Angelsen, 1998:68).

Nevertheless, the general lesson from this literature is that tenure security matters, but whether its effect is positive or negative on forests is dependent upon the context of the model and other model parameters. Further, tenure and tenure security are dealt with in ways that are too stylized to provide much guidance on what particular forms of tenure might work best on the ground.

4 EMPIRICAL LITERATURE ON LAND TENURE AND FORESTS

The theoretical effect of land tenure security on deforestation is ambiguous. So now we look for evidence of an empirical relationship among different forms of tenure, tenure security and forest outcomes. Without a theoretical expectation for how tenure security should affect deforestation, this exercise is fundamentally a reduced-form empirical estimation based evidence we find in the literature.

4.1 Methods

We selected studies that analyze land use change over time and discuss land tenure, targeting publications that use primary or secondary remote sensing data to measure forest cover change over time. For each study we use a standardized questionnaire to code all cases including questions regarding the effect of several key variables on deforestation such as: owner type, the form of tenure, tenure security (assurance), governance, collective action and other proximate causes (infrastructure, agriculture, demographics, technology, etc.). Each publication was divided into “sites”, and then into the forms of tenure present at each site. Our fundamental unit of analysis is then a particular form of tenure at a specific site, which we call a “case.”
We categorize land tenure into one of the following forms: unmanaged public land (frontier or open access), managed public land (such as parks or reserves managed by a government agency), communal, customary/traditional, and land under private ownership. Where governments explicitly restricted the conversion of forests to other land uses and restrictions, we categorized these as managed public land. Where such restrictions were absent, but land still fell into the general public realm, we categorized these as unmanaged public land.

Second, we record whether each case experienced a positive or negative forest outcome according to the authors of the study. For example, “slowed deforestation” is a positive outcome relative to “accelerated deforestation”, although forest is lost in both cases. “Forest lost,” however, is a negative outcome relative to another form of tenure where we see “forest maintained.” Positive outcomes refer to slowed deforestation rates, maintained forest cover or regenerated forest cover. Negative outcomes include increased deforestation rates or loss of forest. Although this measure depends on how the study authors’ (possibly subjectively) frame their work, we feel this is the best way to make meaningful comparisons across studies that keep in line with the spirit of the authors’ conclusions. As a result, however, our synthesis here cannot draw conclusions about the empirical relationship between tenure and absolute increases or decreases in forest, but only whether a particular form of tenure may be a positively or negatively associated with a particular forest outcome.

Finally, we use the context of the discussion or publication authors’ explicit recognition of the tenure security for that particular site. This measure is inherently subjective to our interpretation of the papers since many papers do not address tenure security directly. When tenure security is not explicit, we take cues from the authors’ discussion over conflict, policy enforcement, incidence of squatting, agencies’ monitoring capabilities, etc. to infer whether a case exhibits secure or insecure tenure. If there is no indication of insecurity, we did not assume any. Therefore, our measure of security may be biased towards “secure” since discussions of politics or conflict are not often part of traditional remote sensing analyses. For a more detailed description of these three steps, including a walk-through of our rationale with one of the sample studies, please see the Methods Appendix.

4.2 Case selection

We reviewed over 100 peer-reviewed publications as candidate studies. We ultimately selected 41 publications that fit within our selection criteria, within which we identify 87 sites where forest cover was analyzed. We finally end up with 137 cases of tenure conditions tied to a specific site. Our
publication search aimed to stratify our sample by region, but found a relative lack of studies in Southeast Asia, East Asia and the South Pacific, although cases with positive and negative outcomes are distributed quite evenly throughout our regions (Table 1).

In the sections that follow, we first review the association between the form of tenure and forest outcomes, and then investigate the interaction of tenure security and forest outcomes. We conclude our results with a regression model that takes into account these factors simultaneously.

Table 1 around here

4.3 Form of Tenure

We group the tenure form into four categories: public, private, protected and communal/customary land. The literature often conflates communal and customary forms of tenure, so we are restricted to categorizing both into a single category.

Figure 2 around here

The study set reveals both positive and negative outcomes for forest cover across all the most common types of tenure (Figure 2). Figure 2 also shows that, in general, we find no clear evidence to suggest one specific tenure type is optimal for protecting forests. Negative outcomes pervade all tenure types. However, we do see that public frontier land is associated with more negative forest outcomes and that protected land seems to also have slightly more positive outcomes than negative ones.

Figure 3 around here

Regionally, some patterns begin to emerge for some tenure forms in the three most heavily researched regions (we exclude South Asia due to almost exclusive analysis of communal land in publications from that region). Though we cannot make strong conclusions due to our limited sample sizes within regions, communal tenure seems to perform somewhat poorly in Africa (Figure 3a), somewhat well in Central America (Figure 3b) and has more mixed effects in South America (Figure 3c).
Overall, private land also leads to mixed outcomes, but seems to perform worse in Central America. Protected areas, uniformly, have slightly more positive than negative results within each region, but the opposite is true for public frontier land. The negative result for public land reflects cases of illegally occupied land at the forest-farm interface and encroachment into the frontier, the majority of which occur in studies from the Amazon. These results give us some reason to question our first null hypothesis, that the form of tenure has no relationship with forest outcomes, especially when we look at public and protected land.

4.4 Tenure security

Tenure security, alone, does not guarantee the preservation of forest cover. Figure 5 shows that even with secure tenure\(^2\), negative cases are common, but positive outcomes occur significantly more often than negative ones. Similarly, when tenure is insecure, a negative forest outcome is significantly more likely than a positive one. Tenure security seems to help keep forests intact, but we find no discernable results by region with respect to tenure security.

[Figure 4 around here]

Table 2 generally shows that not only are positive and negative outcomes possible over all tenure types, so are secure and insecure tenure conditions. Notably public and protected areas seem particularly prone to insecure conditions\(^3\). For communal land, insecurity is tightly linked to negative outcomes and secure tenure with positive outcomes \((\chi^2 = 21.5; p = 0.00)\). In aggregate, we see this relationship holds as well \((\chi^2 = 17.95; p = 0.00)\).

[Table 2 around here]

2 Of our cases 42 out of 95 had (implied) tenure security.

3 This result is possibly due to publication bias. Protected areas receive more attention when they are insecure, and public frontier areas have received attention for encroachment into the forest-farm interface via illegal occupation, which is a condition of insecurity.
Using a probit regression model, Table 3 presents the marginal effects for multiple factors that influence positive (1) or negative (0) forest outcome, including a binary measure of tenure security (1=present, 0=absent) and dummy variables for the form of tenure. The first model (I) controls for tenure security and form, model (II) includes regional controls and model (III) adds interaction terms shown important in the descriptive results above. We attempted to control for possible endogeneity of tenure security and deforestation with an instrumental variable approach, where we used World Bank country-level governance indicators as instruments for tenure security (Kaufmann et al., 2010). However, none of these indicators proved valid instruments, so we present the results here with interpretations of correlation only. That is, in some cases we cannot rule out the possibility that there are feedbacks between deforestation and tenure security. Regardless, these models perform relatively well, correctly predicting 67-72% of the observations in our sample. The results are qualitatively consistent with equivalently specified linear probability (ordinary least-squares) and logit models (the sign, significance and relative magnitudes are all similar).

Irrespective of controls for the form of tenure and other regional effects, our measure of tenure security has a consistent positive effect on forest outcomes. These empirical results imply that having secure tenure improves the probability of a positive forest outcome by about 40%. Encouragingly, forests under protective tenure (parks and forest reserves) are also about 40% more likely to be associated with positive forest outcomes relative to private land rights. After controlling for other factors, the effects of public and private land are not statistically different. The same is true for communal land until we specifically account for communal land in Africa, as motivated by the descriptive results in Table 3a. The interaction term that represents communal land in Africa (Communal*Africa; model III) significantly decreases the probability of a positive outcome by 50% in our sample. Controlling for other regional dummy variables show little influence on our forest outcome measure.

With regard to our first null hypothesis that the form of tenure does not matter, these results present a mixed message. When controlling for other factors, namely tenure security, the effect of protected areas have a consistently positive impact on forest outcomes over the other forms of tenure. However, the outcomes from public and private (the reference group) land are statistically indistinguishable. This makes sense because the “protected” class is the only form of land tenure that

4 The constant, whose marginal effects are not calculated, represents the reference group of private property (I) or private property in Africa (II, III). In models I and II, the constant was negative and borderline significant (p = 0.09 in both cases). In model III, the sign was negative but not significant (p = 0.22).
aims to dictate a particular land cover, that is, that land remains forested. All other forms of tenure give use rights and decision making to the landholder(s), who(m) may or may not find it beneficial to keep a particular piece of land in forest. When tenure security is not included in the model, the estimated effects of the forms of tenure are not stable or significantly associated with deforestation outcomes (results not presented).

Regarding the second null hypothesis, we see empirical evidence to reject the null hypothesis that tenure security is not important. Although greater implied tenure security seems to improve the probability of positive forest outcomes, tenure security by no means prevents changes in forest cover, as can be seen in Figure 5. Payments or policies must take into account conditions that determine the value of alternative land uses relative to forest for local landholders.

[Table 3 around here]

5 BROAD LESSONS FROM THE LAND TENURE LITERATURE

5.1 The form of tenure does not imply security

The results of our analysis show that all forms of land tenure are susceptible to tenure insecurity. However, often land tenure security is mistakenly linked with particular forms of land tenure. Perhaps born out of concepts embodied in The Tragedy of the Commons (Hardin, 1968), open access resource models (e.g. Gordon, 1954) and early assumptions that titling land would solve deforestation problems (van den Brink et al., 2006), property rights over natural resources are often naïvely viewed along a spectrum of “strength” from unstable open access systems to strong private ownership. Common property resource systems are often seen as middle ground (Cheung, 1970; Dasgupta and Heal, 1979) on this spectrum of strength. Private property rights are conceptualized as the most secure, where owners are able to maximize profits and harvest sustainably. In areas with no formal property rights, so the story goes, resources are overharvested and profits dwindle because tenure is insecure. This view promotes the idea that individual forms of land tenure are more secure, while tenure granted to larger groups are assumed inherently weak. The empirical cases reviewed here show little evidence to support these assumptions.

Decades of common property research shows that informal social controls and local collective action can mitigate the “tragedy” resulting from competition over common-pool resources (Agrawal,
2001; Bromley, 1992; Ostrom, 1990), and even systems that have no operating rules over resource use can perform quite close to private systems depending on local context (Robinson et al., 2012). Another literature review (Porter-Bolland et al., 2011) finds community-managed forests have lower and less variable deforestation rates relative to protected forest. Therefore it is a fallacy to categorically ascribe security to any particular form of land tenure.

In our view, it is an oversimplification to equate land tenure security with private property rights or the possession of land title. When properly recognized by national and/or local legal systems, many forms of tenure are legitimate and secure (Bruce et al., 2010). Yet scholars constrained by time and data collection limitations may assume private rights are the most secure (e.g. Pichón 1997), and use title as a basis to infer the effect of tenure security. But legitimate communal land, public property and leased property can also be secure and, in some cases, private holdings may be suboptimal for other reasons. For instance, Wainwright (2009) describes a process of privatizing communal land that instigated land speculation and clashed with local cultural and spiritual beliefs. Others have argued that in some conditions tenure security can have negative consequences for environmental public goods (Garnett et al., 2007).

5.2 Communal land

More than one billion people depend on forests for their livelihoods (FAO, 2008), and large fraction live in communities with communal or customary rights to forest (Agrawal, 2007), making communal land a special category of interest. Further, agencies are exploring initially targeting communal land for REDD+ programs to avoid high transaction costs associated with identifying, contracting with and monitoring individual landowners.

Looking at the body of studies reviewed, communal and customary land tenure have mixed effects on forest outcomes (Figure 2), but some patterns begin to emerge at the regional level (Figure 3). In African communities, communal and customary land tenure systems seem to have a negative association with forest outcomes. In part, this could be due to our inability to distinguish between communal systems and customary ownership. In many African cases, customary rights are more common and had much historical significance but, recently, enforcement of traditional rules has been difficult due to population growth, poverty and emerging market and political forces (e.g. Kakembo, 2001; Mwavu and Witkowski, 2008). Further, Africa has been especially wrought with civil conflict and related changes in governance structures. These have likely had an impact on natural resource use.
An emerging body of “large-N” research documents how communities can engage in collective action to prevent degradation of common pool resources, particularly when a community has recognized property rights. Rules (Hayes, 2006), enforcement of rules (Gibson et al., 2005), monitoring and maintenance (Van Laerhoven, 2010) and metrics of governance (Hyde et al., 2003; Persha et al., 2011) have all emerged as important factors for positive forest outcomes. All these studies point toward increasing the security of tenure in communal systems, as does another review of common property studies (Pagdee et al., 2006).

Our review shows a mix of outcomes for forests held in common, highlighting the fact that communal settings face land use pressures just like any other form of land tenure. Other work shows that degradation of the commons can rightfully be attributed to conditions from outside a user group as well, acknowledging the need to address larger institutional incoherence (Bromley, 2008). Therefore even when rights to common lands are secure, collective decision-making may find it desirable to convert forest to some other land use.

5.3 Tenure data and measurement

In reviewing the empirical literature, it is apparent that over the past twenty years data on forest cover and forest conditions is increasing in both quantity and quality, but the same is not true of land tenure data, which require physical delineation and demarcation of social relations, which are sometimes contested. The quality of remotely sensed data increases with technology, but measuring tenure often involves knowledge of intangible relationships or agreements between communities. Analysis of forest cover change is evolving to explore temporal dynamics and spatial patterns, yet investigation of the drivers of forest cover change is lagging, often due to insufficient data on spatially explicit land tenure at various points in time.

Spatial land tenure datasets are rarely available, requiring researchers to create maps from proxies. At the regional or national scale, often the best source for tenure data is an agricultural census, which focuses only on certain types of landholdings (mainly lands managed for cultivation or livestock, with limited forested areas), and neglects local nuance in communal and customary rules and norms. At a more local scale, household surveys and participatory mapping are key method for deriving spatial definitions of land tenure. This translates into datasets that may be consistent with community perceptions but may not, in fact, be recognized by the state or surrounding communities. Therefore, external validity
can be an issue. For these reasons, it can be difficult to find agreement with locally-derived tenure data and regional or nationally-defined land tenure systems.

As a specific example we note our difficulties parsing communal and customary land tenure for this review (noted above, communal and customary forms of tenure were often conflated, restricting us to categorize both in a “communal” category). Communal land is the label often used to categorize a range of tenure forms related to customary and common property rights that do not fit neatly into other categories (Ankersen and Barnes, 2004). Communities with customary land rights may have complex rules and overlapping forms of tenure that apply to different land based resources (e.g., Long and Zhou, 2001) and are a complex of open and communal regimes. How are researchers to categorize such systems for comparability with other areas? Without a good way to deal with these issues, studies tend to use “common property” as a catch-all term for what can be a set of wildly diverse governance systems.

Key challenges remain in conceptually linking and spatially modeling human dimensions that influence or drive tropical deforestation. “Tenure” is sometimes simply noted as a deforestation risk factor or driver, but without a causal explanation (Rudel et al., 2005). “People and pixels” issues are of particular concern for studies attempting to match forest cover change results based on remotely-sensed imagery with locally-derived forest tenure and governance variables (Liverman and Cuesta, 2008; Ostrom and Nagendra, 2006).

Correctly documenting the form of tenure is challenging, but measuring tenure security is even more difficult since security can be legitimate or perceived and security is largely determined by intangible characteristics that influence decision-making. For these reasons, few empirical articles explicitly aim to measure tenure security (Arnot et al., 2011). Further, the form of land tenure is fundamentally a static concept while land tenure security is inherently forward-looking, expressing the expectation that the benefits and duties provided by the rules and norms that make up land tenure will be upheld in the future (Sjaastad and Bromley, 2000). Tenure security reflects a perception of risk.

6 CONCLUSION

6.1 How does tenure matter?

The main goal of this article is to better understand when tenure and tenure security are likely to be important factors in deforestation. First, we emphasize that land tenure is inextricably linked to many socioeconomic and governance factors, thus it is difficult to disentangle tenure from other direct and indirect causes of deforestation. Most fundamentally, the form of land tenure can be composed of many
different property right bundles, and specific bundles affect forest outcomes in different ways. Further, the review of empirical studies reveals that no form is immune from deforestation pressure.

At an aggregate level, the form of land tenure seems to matter in different ways in different regions of the world. We cannot rule out selection or publication bias given our relatively small sample of case studies in each region, but these outcomes emphasize the importance of local factors. Overall, protected land is associated with positive outcomes in all regions, and public land seems to be particularly vulnerable to negative forest outcomes in South America. Communal land seems to perform well in Central America but worse in Africa, possibly due to the effects of regional conflict. However, in particularly poor areas, common property can be advantageous in other ways: community members can access common land for farming when external shocks would otherwise induce crises (van den Brink et al., 2006).

[Table 4 around here]

Further, while we have argued that the form of tenure can take many shapes, ensuring that tenure is secure is perhaps more important for designing policies to influence forest outcomes. Theoretical economic models demonstrate that decreases in tenure security decrease the net present value of all land uses, but can impact forested land uses proportionally more than agriculture. This is not always the case, as land use decisions are determined by the value of various land use options, so we would never conclude that safeguarding tenure security alone will stop deforestation. Empirically, however, security does seem to increase the probably of positive forest outcomes, after controlling for the form of tenure and regional factors. Table 3 gives several example explanations from some of the empirical literature we review above for the connection between tenure (security) and deforestation. Some claim tenure is of the utmost importance, while others find it marginal or insignificant.

In sum, land tenure and tenure security are not, in and of themselves, perfect safeguards for forests. Tenure and tenure security enable landholders, whether individuals, household or communities, to take into account future values into current decision-making. This matters not just for forests, but for any benefit accruing from the land over time. However, in light of PES programs and REDD+, where future incentives are tied to particular land use-based duties (e.g. maintain forestland), the security of tenure is crucial to influence landholders’ decision-making. Therefore, tenure security is necessary to prevent
deforestation through market-based mechanisms, but alone does not necessarily protect forests. A quote by Garnett et al (2007) captures this nicely:

… tenure is not always an effective means of protecting natural capital. When equitable tenure is established, it can provide incentives to invest in built capital rather than conserve natural capital. Although sustainable management of natural resources is seen as one of the benefits of land reform, the capacity to invest in agricultural intensification is an even more desirable consequence… Nor does secure communal tenure necessarily protect natural values… Thus, secure tenure and land title may not be a universal panacea for poor management of the commons.

6.2 Future research

Future empirical studies should be clear in describing how they conceptualize issues around tenure form and security. What forms of tenure exist in the study area? What is the respective security of each land tenure form as perceived by landholders? To simply use land title as a metric for tenure security should be avoided, at least without proper justification relative to other factors that might affect tenure security in the study area.

As better data become available, we see a need for more studies that analyze site-specific land use change over time or account for covarying land qualities across tenure types. Joppa and Pfaff (2010) describe the advantages of statistical “matching” techniques for land cover datasets that addresses the latter concern. Most empirical studies in our review compared forest cover trends for different areas that have different tenure regimes, but this ignores the potential endogeneity of tenure choice that may be based, at least in part, on existing forest characteristics. For example, productive forests near urban centers might be under private management to protect that productivity. Communal holdings may be in rural areas simply because competition is weaker and enforcement of borders is not as costly. Additionally, with time series data studies should increasingly be able to use techniques to control for time-varying factors through analysis of deforestation rates over time (e.g. Holland et al., 2012), difference-in-difference methods or a combination of these and matching techniques. Looking at changes in deforestation trends on the same piece of land with a change in tenure, while controlling for other time-varying factors and endogeneity, better captures tenure’s *ceretis paribus* effect.

A better understanding of how the larger suite of economic and social pressures impact forest users is needed. Macro conditions often create incentives that induce encroachment into forests, but are not often given credit for “explaining” deforestation activity. Documenting and understanding such
linkages is largely missing, and addressing the larger institutional factors underlying these problems is a much more challenging issue (Bromley, 2008).

Finally, research is needed to better understand how to strengthen tenure security. In many areas, communities have legal land rights, but feel vulnerable to other changes in policy or politics that may compromise those rights in the future. Land tenure insecurity is likely a symptom of more broad political and economic systemic incoherence that individuals face. We must often look beyond forests themselves to find the final causes of deforestation in a region (Bromley, 1999). With regard to the implementation of REDD+, communities need assurance that current land use decisions will result in future benefits. What are options to promote landholders’ security in current tenure arrangements, and which are most likely to be effective in what situations? The most important efforts likely entail the admittedly hard work of strengthening legal and social institutions. Some interim steps may include promotional campaigns, prosecuting more cases against land claims and dialogue among communities and agents of the state to ensure claims will be upheld.

6.3 Addressing tenure issues at the forest-farm interface

To reduce emissions is to halt expansion of the frontier. Policies that aim to limit further conversion of forest to agriculture must first understand the incentives for conversion. Are there policies favoring conversion to agriculture? Are there recent changes in relative agricultural or forest-product prices, access to markets or the arrival of new technologies that shape incentives for greater conversion? If so, these factors may have just as much, if not more, short-term impact on emissions at the forest-farm interface as securing tenure. Moreover, policies that aim to change land use decisions must provide enough incentive to reverse any landholder’s incentive to engage in agriculture. But to understand what quantity of compensation is “enough,” we must understand the context in which land use decisions are made. Additionally, security in such payments is needed. For policies to have any lasting effect, clarifying tenure and developing a supporting institutional environment to back tenure claims is crucial.

That said, where tenure security is currently lacking, transitions can be difficult (Ho and Spoor, 2006). In some cases, the process of clarifying tenure can hasten deforestation. Securing tenure may result in increased access to credit, which can positively or negatively impact forests. In another example, Deacon and Mueller (2006) argue that strengthening property rights can encourage competition for land acquisition, resulting in rent-seeking behavior with the potential for violent conflict. Deforestation can also accelerate when securing tenure is tied to “beneficial use” of land (i.e., deforestation), as we see in
many of the studies of the Amazonian region (e.g. Mena et al., 2006; Rudel, 1995; van Gils and Ugon, 2006). In Côte d'Ivoire a process aimed to fully capture the rights tied to communal access to resources, but this proved to be complex and ended in a simplification of rights that strengthened individual rights over common ones (van den Brink et al., 2006).

These anecdotes caution us that efforts to clarify tenure can be risky for people and forests. Tenure interventions likely improve livelihoods for some but may worsen it for others. Clarifying and strengthening tenure are costly and slow, but investment is needed for both social equity and environmental sustainability. Resolving tenure issues is not just about clearly demarcating boundaries, but can sometimes result in a conflict resolution process. Working both at local- and policy-levels is vital to ensure smooth social and statutory transitions (Garnett et al., 2007).

Our review of studies highlights the complexity of on-the-ground tenure situations. Land tenure and the related issue of “whom to pay” has been widely recognized in the context of REDD+ (Cotula and Mayers, 2009; Sandbrook et al., 2010; Sunderlin et al., 2009; Wendland, 2008), and the empirical literature shows that complex tenure arrangements should be considered the rule and not the exception (Unruh, 2008).

We need a frame of reference for tenure security in any given situation in order to understand its effect on forests. Tenure insecurity is often cited as a cause for resource degradation. But inferring a causal relationship between tenure security, singularly, and deforestation is to ignore the larger context in which tenure is embedded and defines the impact of such an institution. This is certainly one reason for tenure’s varied outcomes regarding forest cover seen in the literature reviewed above. Secure tenure helps prevent deforestation in some areas, but does not change landholders’ underlying right to make land use decisions as they see fit. Indeed, when there are strong benefits to clearing forest, a landholder with secure rights will need very strong external incentives to keep her forest ecosystems intact. Tenure and tenure security matter, but they matter only in the context of other policy, economic and infrastructural changes. We stress the need for secure and clear land rights, but policy makers and policy promoters must be mindful of the larger context within which communities are embedded.
7 METHODS APPENDIX

7.1 Framework for assessing empirical studies

Our conceptual framework aims to measure whether there is a relationship between tenure or tenure security and forest outcomes using prior published empirical studies. We first record the form of tenure being discussed. Second, we use the context of the discussion or author’s explicit recognition of the tenure security of that particular land area or parcel. Finally, we record whether the incentives for forest conservation are higher or lower, relative to forest held in other types of tenure in the study. At each of these three levels, we choose decision rules about how to develop categories. We describe these decision rules in detail below, and then give an example from one of the case studies included in the review.

We first record the form of tenure as described by paper authors. From paper descriptions, it is not always possible to discern *de jure* from *de facto* tenure. When these concepts are both clearly discussed within a study, we opt to use the *de facto* arrangement for analysis, since *de facto* arrangements drive landholders’ decisions. The review of studies results in the following categories: unmanaged public land (frontier or open access), public land managed by a government agency (parks or reserves), communal, private, usufruct rights, leasehold/rent, customary/traditional, and concession land. To facilitate comparisons, we re-categorize usufruct rights, leasehold and concession into either private, communal/customary, protected or frontier land, using the context of the paper to determine the best fit. We also collapse communal tenure and customary/traditional tenure into one category. In some cases, we think it is likely that land labeled “communal” would be better described as customary. In our view, the lesser bias is to use one communal category to summarize our findings.

Many empirical studies mention the importance of tenure security, but few explicitly make a claim as to the particular security or insecurity of land parcels. In cases where tenure security was not explicitly addressed we turn to the context of the study to infer the implied tenure security for that form of tenure. Situations we label “insecure” are where, for example, *de jure* and *de facto* tenure are not the same, communities are adjusting to new tenure arrangements or enforcement and monitoring of tenure arrangements are stated as particularly weak.

At the third level, forest outcomes are reported in various ways. Some studies report relative measures for forest outcomes, e.g. comparing forest conditions under one form of tenure to forest conditions in a different form. Others report absolute changes in forest cover over time. Those that look at
relative measures tend to celebrate not only forest regeneration, but also slowed deforestation. Others report any absolute forest loss negatively. Relatively few studies analyze how forest outcomes change with a change in tenure on the same piece of land, but simply report forest outcomes associated with different tenure. Regardless, we treat these equally in our review, which simply discerns the forest outcome associated with a particular tenure type.

For forest cover, we first categorize outcomes as reported by the studies. For relative studies we record whether deforestation accelerated, slowed or if forest regeneration accelerated relative to comparative areas in the study. When only the magnitude of forest stock was reported, we recorded whether forests were maintained, lost or regenerated\(^5\). We then simplify these categories into a binary positive and negative forest outcome. Relative measures imply a clear normative relationship: accelerated deforestation is negative while slowed deforestation or forest regeneration is positive. However, when studies only report absolute measures, we generally classified forest loss as negative and forest maintained or regenerated as positive, but look to the study for contextual interpretation.

As an example of study coding, Futemma (2003) describes a case in which land users have had de facto rights to the land for centuries, but recently the forest was delineated and usufruct rights were granted to households while private titling was in process. We categorize this tenure form as private since the land has been delineated and landholders know title is coming, but we label its tenure as insecure since title has yet to come and the system is in flux. In this study, Futemma shows that usufruct rights resulted in forest loss, which we categorize as negative.

7.2 Methods

7.2.1 Case selection

We select cases that analyze land use change over time and discuss property rights or land tenure. We target studies that use primary or secondary remote sensing data to measure forest cover change over time, but include cases where change in forest outcomes is measured using in-field inventories or discussed in careful detail.

\(^5\) We try to focus on relative measures since our focus here is on the relative performance of secure tenure and the relative measures contain the absolute information (i.e., if deforestation is slowed or accelerated, we know there was forest lost in either case).
To find publications, we searched academic databases with combinations of terms related to forests, land tenure, property rights, land use and remote measurement. Publications selected for analysis are also reviewed for reference to relevant studies. Finally, we asked several key informant academics to review our list of publications and offer suggestions for other studies. We narrow our selection to 39 publications and drop studies that do not meet our criteria.

7.2.2 Coding of cases

We use a standardized questionnaire to code all cases. The questionnaire includes questions about the effect of several key variables on deforestation such as: owner type, the form of tenure, tenure security (assurance), governance, collective action and other proximate causes (infrastructure, agriculture, demographics, technology, etc.). The survey contains mostly structured questions but includes open ended responses to capture nuance in findings.

Questionnaires were each completed by the co-authors or coders (graduate students) who are trained in the relevant issues and broadly familiar with the literature. After coding cases began, regular meetings were held with all coders to ensure consistency in interpretation, reporting and to address other conceptual issues as a team. Before compilation of findings, the lead author additionally reviewed all articles and responses for consistency.

7.2.3 Analysis methods and assumptions

All studies were input into a database by the number of sites analyzed within a study. Sites are further disaggregated into the forms of tenure present at each site, which were each labeled as a separate case. Cases are our fundamental units of analysis, each carrying equal weight. We compile descriptive statistics by case and, when appropriate, we use statistical tests to infer confidence in observed differences.

7.2.4 Limitations

As with any review of literature, our inferences are inherently biased since the studies we review take place in settings where forests and tenure issues are particularly salient. Thus, there is inherent bias in our sample selection.
In some geographic areas, we found a limited amount of published literature. For example, we encountered relatively few studies in Asia and the south Pacific (Figure 2), where remote sensing analyses have been less frequent and tenure studies often focuses on communal or customary land managed by minority groups (e.g., see Pagdee et al., 2006), but forest cover change is less quantitative. Similarly, forest cover change in West Africa seems to have received limited attention (although Africa as a continent is well represented). There, studies are dominated with other explanatory factors such as migration, climate change and colonial inheritance (Ouedraogo et al., 2009; Ouedraogo et al., 2010; Paré et al., 2010; Wardell et al., 2003). Where land tenure is explicitly discussed it often comes in the context of complex community relations and resource-allocation norms but is not connected to forests (Reenberg, 2001).

7.2.5 Case descriptions

The majority of our 43 sites are in tropical forest and the dominant land use activities are subsistence agriculture, livestock production, subsistence forest use and commercial agriculture (Table 3). Twenty-nine of the sites are located in protected areas and 16 were on indigenous groups’ land.

While remote sensing data was used 28 sites, the remaining cases utilized previous remote sensing studies, plot-level analysis, or household and community surveys to examine land use change. Remote sensing utilized mostly Landsat imagery (24 of the 28 sites) and focused on change over time from forest to non-forest or the conversion of forest to agriculture. Many of these studies used hybrid approaches to match remote sensing analysis with household or community-based surveys (22 sites). The duration of analysis ranges from one to fifty years (Table 4), with an average of 14 years. The study area for each site varies considerably, from less than one square kilometer to approximately 5 million km² (the area of the nine Brazilian Amazonian states). Excluding the high outlier, the average size of area studied is 4,856 km².
We also gathered information on how forest outcomes were associated with other measures, such as the length of time over which forest cover change was analyzed, presence of violent conflict, infrastructure characteristics and other demographic factors. However, none of these factors showed a significant relationship with forest cover or their presence in our study set was limited. Since our focus is on tenure measures, we report these in the main text.
LITERATURE

Empirical Studies Reviewed

265-269.
Lifespan of Three Colonization Areas in the Brazilian Amazon." World Development.
Management from the Tanzanian Miombo Woodlands." World Development 36(12): 2780-2800.
25. Luoga, E., E. Witkowski, et al. (2005). "Land cover and use changes in relation to the
institutional framework and tenure of land and resources in eastern Tanzania miombo
woodlands." Environment, Development and Sustainability 7(1): 71-93.
Development and Land Use/Cover Change in the Northern Ecuadorian Amazon." World
forest reserve, NW Uganda: implications for forest and woodland sustainability." Land
from a decade of forest loss and economic growth around Kibale National Park, Uganda'.
34. Pichón, F. (1997). "Colonist land-allocation decisions, land use, and deforestation in the
with institutions and the effectiveness of management in Mpigi forests, central Uganda." Southern

pg. 26

Cited in text

Ostrom, E., Nagendra, H. (2006) Insights on linking forests, trees, and people from the air, on the ground, and in the laboratory. Proceedings of the National Academy of Sciences 103, 19224-19231.

Table 1: Frequency of cases by Region

<table>
<thead>
<tr>
<th>Region</th>
<th>Total cases</th>
<th>Positive outcome</th>
<th>Negative outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>South America</td>
<td>33</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>Africa</td>
<td>32</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>South Asia</td>
<td>29</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Central America</td>
<td>26</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>East Asia</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>South Pacific</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2: Tenure form, security and forest outcomes

<table>
<thead>
<tr>
<th>Tenure Form</th>
<th>Total Cases</th>
<th>Positive outcome</th>
<th>Negative outcome</th>
<th>Probability of correlation*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\chi^2)</td>
</tr>
<tr>
<td>Public</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>21</td>
<td>6</td>
<td>15</td>
<td>2.63</td>
</tr>
<tr>
<td>insecure</td>
<td>20</td>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>secure</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Protected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>19</td>
<td>12</td>
<td>7</td>
<td>0.17</td>
</tr>
<tr>
<td>insecure</td>
<td>12</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>secure</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>25</td>
<td>12</td>
<td>13</td>
<td>0.29</td>
</tr>
<tr>
<td>insecure</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>secure</td>
<td>22</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Communal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>70</td>
<td>36</td>
<td>34</td>
<td>21.50</td>
</tr>
<tr>
<td>insecure</td>
<td>26</td>
<td>4</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>secure</td>
<td>44</td>
<td>32</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>137</td>
<td>63</td>
<td>74</td>
<td>17.95</td>
</tr>
<tr>
<td>insecure</td>
<td>71</td>
<td>48</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

* The null hypothesis of the \(\chi^2 \) test is that there is no correlation between tenure security and positive or negative forest outcomes. A significant result suggests the distribution between these factors is not likely random.

Table 3: Marginal effects for the predictors of the probability of observing negative (0) or positive (1) forest outcomes

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenure security</td>
<td>0.39 (0.09)**[^1]</td>
<td>0.40 (0.09)**[^1]</td>
<td>0.37 (0.10)**[^1]</td>
</tr>
<tr>
<td>Communal</td>
<td>0.13 (0.12)</td>
<td>0.09 (0.14)</td>
<td>0.22 (0.14)</td>
</tr>
<tr>
<td>Protected</td>
<td>0.38 (0.17)**[^1]</td>
<td>0.34 (0.18)*[^1]</td>
<td>0.38 (0.17)**[^1]</td>
</tr>
<tr>
<td>Public</td>
<td>0.15 (0.17)</td>
<td>0.16 (0.17)</td>
<td>0.25 (0.18)</td>
</tr>
</tbody>
</table>

[^1]: The null hypothesis of the **[^1]** test is that there is no correlation between tenure security and positive or negative forest outcomes. A significant result suggests the distribution between these factors is not likely random.
<table>
<thead>
<tr>
<th>Private (reference)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Central America</td>
<td>0.05 (0.08)</td>
<td>-0.10 (0.15)</td>
<td></td>
</tr>
<tr>
<td>South America</td>
<td>-0.02 (0.10)</td>
<td>-0.08 (0.18)</td>
<td></td>
</tr>
<tr>
<td>East Asia</td>
<td>-0.06 (0.08)</td>
<td>-0.21 (0.16)</td>
<td></td>
</tr>
<tr>
<td>South Asia</td>
<td>0.07 (0.09)</td>
<td>-0.05 (0.20)</td>
<td></td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>0.14 (0.17)</td>
<td>-0.03 (0.21)</td>
<td></td>
</tr>
<tr>
<td>South Pacific</td>
<td>-0.08 (0.13)</td>
<td>-0.20 (0.15)</td>
<td></td>
</tr>
<tr>
<td>Africa (reference)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communal* Africa</td>
<td>-0.52 (0.27)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public* South America</td>
<td>-0.27 (0.26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of analysis (yrs)</td>
<td>0.00 (0.00)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coefficients reported represent the marginal effect of a discrete change in a variable from 0 to 1. Robust standard errors are in parentheses, clustered by publication.

* p < 0.10; ** p < 0.05, *** p < 0.01

Table 4: Does Tenure Security Slow Deforestation? Sample Explanations from the Literature

<table>
<thead>
<tr>
<th>Yes (clearly important)</th>
<th>Helps, but inadequate</th>
<th>Insignificant</th>
</tr>
</thead>
<tbody>
<tr>
<td>“The main outcome of this paper is that insecure property rights in land drive deforestation in the Brazilian Amazon.”</td>
<td>“Defined land tenure is not enough to guarantee a successful settlement that combines intensive forms of agriculture and conservation of forest.”</td>
<td>Threats from outsiders – colonists, Shining Path guerrillas, road crews – continued to plague the Yanesha, even after they had official title to their land.</td>
</tr>
<tr>
<td>- (Araújo et al., 2009)</td>
<td>- (Futemma and Brondizio, 2003)</td>
<td>- (Morrow 1996)</td>
</tr>
<tr>
<td>As the above findings show, all things being equal, titled farmers deforest less than those without title. …thus [no title] causes negative environmental effects whenever it leads farmers to forgo investment in the agricultural resource base they would otherwise have undertaken.”</td>
<td>It is unclear whether, alone, the common property institutions of Tziscao would be sufficient to prevent overuse of the common pool forest resource; the needs of the growing population of Tziscao may perhaps exceed their managerial scope. At present, joint regulations [communal and national park] are robust enough to respond to the needs of current residents of the community.”</td>
<td>“The results of this study suggest that interactions between land use factors may be more important in determining miombo woodland regeneration and re-growth structure than land tenure type. Accordingly, it is recommended that future management of miombo woodland should emphasize more the regulation of land use activities than the changing of land tenure systems.”</td>
</tr>
<tr>
<td>- (Pichón, 1997)</td>
<td>- (Johnson and Nelson, 2004)</td>
<td>- (Chidumayo, 2002)</td>
</tr>
</tbody>
</table>
Table 5: Dominant vegetation and land uses at 43 sites

<table>
<thead>
<tr>
<th>Dominant vegetation types</th>
<th>Dominant economic land use activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>tropical forest</td>
<td>subsistence agriculture 122</td>
</tr>
<tr>
<td>wetlands</td>
<td>subsistence forest use 82</td>
</tr>
<tr>
<td>montane forest</td>
<td>commercial agriculture 63</td>
</tr>
<tr>
<td>grassland</td>
<td>livestock production/ranching 61</td>
</tr>
<tr>
<td>tropical dry forest</td>
<td>commercial NTFP collection 41</td>
</tr>
<tr>
<td>mangroves</td>
<td>commercial logging 24</td>
</tr>
<tr>
<td></td>
<td>hunting 13</td>
</tr>
<tr>
<td></td>
<td>tourism 7</td>
</tr>
</tbody>
</table>

Table 6: Case areas and duration of analysis

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Mean</th>
<th>Median</th>
<th>Maximum</th>
<th>N (# reporting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study area (km2)</td>
<td>0.06</td>
<td>4,856*</td>
<td>241</td>
<td>64,000*</td>
<td>99</td>
</tr>
<tr>
<td>Duration analyzed (# yrs)</td>
<td>1</td>
<td>14.2</td>
<td>12</td>
<td>50</td>
<td>121</td>
</tr>
</tbody>
</table>

*After excluding the high-end outlier (5million km2 (Araujo et al.)).
Figures

Figure 1. Tenure security and carbon biomass density

[Map of the world showing tenure security and carbon biomass density.]

Source: Bruce et al. 2010.

Figure 2. Forest outcomes and type of tenure

* the p value is for a two-sided binomial probability test that the outcome is random (that is, that the proportion = 0.50)

Figure 3. Regional forest outcomes by tenure

<table>
<thead>
<tr>
<th>Tenure type</th>
<th>a. Africa</th>
<th>b. Central America</th>
<th>c. South America</th>
</tr>
</thead>
<tbody>
<tr>
<td>communal/customary</td>
<td></td>
<td>p value* = 0.90</td>
<td></td>
</tr>
<tr>
<td>private</td>
<td></td>
<td>p value* = 1.00</td>
<td></td>
</tr>
<tr>
<td>protected</td>
<td></td>
<td>p value* = 0.36</td>
<td></td>
</tr>
<tr>
<td>public (frontier)</td>
<td></td>
<td>p value* = 0.08</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4. Forest outcomes with and without secure tenure

* The p value for a two-sided binomial probability test that the outcome is random (the proportion = 0.50).